Urysohn and completely Hausdorff spaces
| Separation axioms in topological spaces | |
|---|---|
| Kolmogorov classification | |
| T0 | (Kolmogorov) |
| T1 | (Fréchet) |
| T2 | (Hausdorff) |
| T2½ | (Urysohn) |
| completely T2 | (completely Hausdorff) |
| T3 | (regular Hausdorff) |
| T3½ | (Tychonoff) |
| T4 | (normal Hausdorff) |
| T5 | (completely normal Hausdorff) |
| T6 | (perfectly normal Hausdorff) |
In topology, a discipline within mathematics, an Urysohn space, or T2½ space, is a topological space in which any two distinct points can be separated by closed neighborhoods. A completely Hausdorff space, or functionally Hausdorff space, is a topological space in which any two distinct points can be separated by a continuous function. These conditions are separation axioms that are somewhat stronger than the more familiar Hausdorff axiom T2.