Zonal spherical harmonics
In the mathematical study of rotational symmetry, the zonal spherical harmonics are special spherical harmonics that are invariant under the rotation through a particular fixed axis. The zonal spherical functions are a broad extension of the notion of zonal spherical harmonics to allow for a more general symmetry group.
On the two-dimensional sphere, the unique zonal spherical harmonic of degree ℓ invariant under rotations fixing the north pole is represented in spherical coordinates by where Pℓ is the normalized Legendre polynomial of degree ℓ, . The generic zonal spherical harmonic of degree ℓ is denoted by , where x is a point on the sphere representing the fixed axis, and y is the variable of the function. This can be obtained by rotation of the basic zonal harmonic
In n-dimensional Euclidean space, zonal spherical harmonics are defined as follows. Let x be a point on the (n−1)-sphere. Define to be the dual representation of the linear functional in the finite-dimensional Hilbert space of spherical harmonics of degree with respect to the uniform measure on the sphere . In other words, we have a reproducing kernel: where is the uniform measure on .