Zitterbewegung
In physics, the Zitterbewegung (German pronunciation: [ˈtsɪtɐ.bəˌveːɡʊŋ], from German zittern 'to tremble, jitter' and Bewegung 'motion') is the theoretical prediction of a rapid oscillatory motion of elementary particles that obey relativistic wave equations. This prediction was first discussed by Gregory Breit in 1928 and the term was coined by Erwin Schrödinger in 1930 as a result of analysis of the wave packet solutions of the Dirac equation for relativistic electrons in free space, in which an interference between positive and negative energy states produces an apparent fluctuation (up to the speed of light) of the position of an electron around the median, with an angular frequency of 2mc2/ℏ, which is twice the Compton angular frequency.
The oscillatory Zitterbewegung motion is often interpreted as an artifact of using the Dirac equation in a single particle description and disappears in quantum field theory. For the hydrogen atom, the Zitterbewegung is related to the Darwin term, a small correction of the energy level of the s-orbitals.