Trans-1,3,3,3-Tetrafluoropropene

trans-1,3,3,3-Tetrafluoropropene
Names
Preferred IUPAC name
(1E)-1,3,3,3-Tetrafluoroprop-1-ene
Other names
R-1234ze(E); HFO-1234ze(E); trans-1,3,3,3-tetrafluoro-1-propene; trans-1,3,3,3-tetrafluoropropylene; trans-1,3,3,3-tetrafluoroprop-1-ene
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.238.116
EC Number
  • 471-480-0
UNII
  • InChI=1S/C3H2F4/c4-2-1-3(5,6)7/h1-2H/b2-1+ Y
    Key: CDOOAUSHHFGWSA-OWOJBTEDSA-N Y
  • InChI=1/C3H2F4/c4-2-1-3(5,6)7/h1-2H/b2-1+
    Key: CDOOAUSHHFGWSA-OWOJBTEDBQ
  • F[C@H]=CC(F)(F)F
Properties
C3H2F4
Molar mass 114.043 g·mol−1
Appearance Colorless gas
Melting point −156 °C (−249 °F; 117 K)
Boiling point −19 °C (−2 °F; 254 K)
Critical point (T, P) 109.4 °C, 36.36 bar
0.373 g/L
Vapor pressure 703 kPa at 310 K
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references

trans-1,3,3,3-Tetrafluoropropene (HFO-1234ze(E), R-1234ze(E)) is a hydrofluoroolefin. It was developed as a "fourth generation" refrigerant to replace fluids such as R-134a, as a blowing agent for foam and aerosol applications, and in air horns and gas dusters. The use of R-134a is being phased out because of its high global warming potential (GWP). HFO-1234ze(E) itself has zero ozone-depletion potential (ODP=0), a very low global warming potential (GWP < 1 ), even lower than CO2, and it is classified by ANSI/ASHRAE as class A2L refrigerant (lower flammability (see below) and lower toxicity).

In open atmosphere however, HFO-1234ze actually forms HFC-23 as one of its secondary atmospheric breakdown products. HFC-23 is a very potent greenhouse gas with a GWP100 of 14,800. This makes the secondary GWP of R-1234ze in the range of 1,400±700 considering the amount of HFC-23 which may form from HFO-1234ze in the atmosphere. Besides the global warming potential, when HFOs decompose in the atmosphere, trifluoroacetic acid (TFA(A)) is formed, which also remains in the atmosphere for several days. The trifluoroacetic acid then forms trifluoroacetate (TFA), a salt of trifluoroacetic acid, in water and on the ground. Due to its high polarity and low degradability, it is difficult to remove TFA from drinking water (ICPR 2019).