Neuropilin

Neuropilin
Crystallographic structure of the dimeric B1 domain of human neuropilin 1.
Identifiers
SymbolNRP
PfamPF11980
InterProIPR014648
Membranome16
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
neuropilin 1
Identifiers
SymbolNRP1
NCBI gene8829
HGNC8004
OMIM602069
PDB3I97
RefSeqNM_001024628
UniProtO14786
Other data
LocusChr. 10 p12
Search for
StructuresSwiss-model
DomainsInterPro
neuropilin 2
Identifiers
SymbolNRP2
NCBI gene8828
HGNC8005
OMIM602070
RefSeqNM_201279
UniProtO60462
Other data
LocusChr. 2 q34
Search for
StructuresSwiss-model
DomainsInterPro

Neuropilin is a protein receptor active in neurons.

There are two forms of Neuropilins, NRP-1 and NRP-2. Neuropilins are transmembrane glycoproteins, first documented to regulate neurogenesis and angiogenesis by complexing with Plexin receptors/class-3 semaphorin ligands and Vascular Endothelial Growth Factor (VEGF) receptors/VEGF ligands, respectively. Neuropilins predominantly act as co-receptors as they have a very small cytoplasmic domain and thus rely upon other cell surface receptors to transduce their signals across a cell membrane. Recent studies have shown that Neuropilins are multifunctional and can partner with a wide variety of transmembrane receptors. Neuropilins are therefore associated with numerous signalling pathways including those activated by Epidermal Growth Factor (EGF), Fibroblast Growth Factor (FGF), Hepatocyte Growth Factor (HGF), Insulin-like Growth Factor (IGF), Platelet Derived Growth Factor (PDGF) and Transforming Growth Factor beta (TGFβ). Although Neuropilins are commonly found at the cell surface, they have also been reported within the mitochondria and nucleus. Both Neuropilin family members can also be found in soluble forms created by alternative splicing or by ectodomain shedding from the cell surface.

The pleiotropic nature of the NRP receptors results in their involvement in cellular processes, such as axon guidance and angiogenesis, the immune response and remyelination. Therefore, dysregulation of NRP activity has been implicated in many pathological conditions, including many types of cancer and cardiovascular disease.