Α-Methyl-p-tyrosine

α-Methyl-p-tyrosine
Identifiers
  • Compounds
  • 2S: Metirosine
  • 2R: (Inactive isomer)
  • 2RS: α-Methyl-p-tyrosine
3D model (JSmol)
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.010.477
KEGG
UNII
  • 2S: InChI=1S/C10H13NO3/c1-10(11,9(13)14)6-7-2-4-8(12)5-3-7/h2-5,12H,6,11H2,1H3,(H,13,14)/t10-/m0/s1
    Key: NHTGHBARYWONDQ-JTQLQIEISA-N
  • 2R: InChI=1S/C10H13NO3/c1-10(11,9(13)14)6-7-2-4-8(12)5-3-7/h2-5,12H,6,11H2,1H3,(H,13,14)/t10-/m1/s1
    Key: NHTGHBARYWONDQ-SNVBAGLBSA-N
  • 2RS: InChI=1S/C10H13NO3/c1-10(11,9(13)14)6-7-2-4-8(12)5-3-7/h2-5,12H,6,11H2,1H3,(H,13,14)
    Key: NHTGHBARYWONDQ-UHFFFAOYSA-N
  • 2S: C[C@](Cc1ccc(cc1)O)(C(=O)O)N
Properties
C10H13NO3
Molar mass 195.218 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

α-Methyl-p-tyrosine (AMPT), or simply α-methyltyrosine, also known in its chiral 2-(S) form as metirosine, is a tyrosine hydroxylase enzyme inhibitor and is therefore a drug involved in inhibiting the catecholamine biosynthetic pathway. AMPT inhibits tyrosine hydroxylase whose enzymatic activity is normally regulated through the phosphorylation of different serine residues in regulatory domain sites. Catecholamine biosynthesis starts with dietary tyrosine, which is hydroxylated by tyrosine hydroxylase and it is hypothesized that AMPT competes with tyrosine at the tyrosine-binding site, causing inhibition of tyrosine hydroxylase.

It has been used in the treatment of pheochromocytoma. It has been demonstrated to inhibit the production of melanin. It is available as a generic medication.