Madhava series

In mathematics, a Madhava series is one of the three Taylor series expansions for the sine, cosine, and arctangent functions discovered in 14th or 15th century in Kerala, India by the mathematician and astronomer Madhava of Sangamagrama (c. 1350 – c. 1425) or his followers in the Kerala school of astronomy and mathematics. Using modern notation, these series are:

All three series were later independently discovered in 17th century Europe. The series for sine and cosine were rediscovered by Isaac Newton in 1669, and the series for arctangent was rediscovered by James Gregory in 1671 and Gottfried Leibniz in 1673, and is conventionally called Gregory's series. The specific value can be used to calculate the circle constant π, and the arctangent series for 1 is conventionally called Leibniz's series.

In recognition of Madhava's priority, in recent literature these series are sometimes called the Madhava–Newton series, Madhava–Gregory series, or Madhava–Leibniz series (among other combinations).

No surviving works of Madhava contain explicit statements regarding the expressions which are now referred to as Madhava series. However, in the writing of later Kerala school mathematicians Nilakantha Somayaji (1444 – 1544) and Jyeshthadeva (c. 1500 – c. 1575) one can find unambiguous attribution of these series to Madhava. These later works also include proofs and commentary which suggest how Madhava may have arrived at the series.

The translations of the relevant verses as given in the Yuktidipika commentary of Tantrasamgraha (also known as Tantrasamgraha-vyakhya) by Sankara Variar (circa. 1500 - 1560 CE) are reproduced below. These are then rendered in current mathematical notations.