Kirchhoff integral theorem

Kirchhoff's integral theorem (sometimes referred to as the Fresnel–Kirchhoff integral theorem) is a surface integral to obtain the value of the solution of the homogeneous scalar wave equation at an arbitrary point P in terms of the values of the solution and the solution's first-order derivative at all points on an arbitrary closed surface (on which the integration is performed) that encloses P. It is derived by using Green's second identity and the homogeneous scalar wave equation that makes the volume integration in Green's second identity zero.