Gold(III) hydroxide

Gold(III) hydroxide
Names
Systematic IUPAC name
Gold(3+) trihydroxide
Other names
Auric acid

Gold hydroxide

Gold trihydroxide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.013.746
EC Number
  • 215-120-0
UNII
  • InChI=1S/Au.3H2O/h;3*1H2/q+3;;;/p-3 N
    Key: WDZVNNYQBQRJRX-UHFFFAOYSA-K N
  • O[Au](O)O
  • [OH-].[OH-].[OH-].[Au+3]
Properties
H
3
AuO
3
Molar mass 247.9886 g mol−1
Appearance Vivid, dark yellow crystals
0.00007 g/100 g
Acidity (pKa) <11.7, 13.36, >15.3
Structure
Trigonal dihedral at Au
Hazards
GHS labelling:
Warning
H315, H319, H335
Safety data sheet (SDS) Oxford
Related compounds
Related compounds
Gold(III) chloride

Copper(II) hydroxide
Gold(III) oxide

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references

Gold(III) hydroxide, gold trihydroxide, or gold hydroxide is an inorganic compound, a hydroxide of gold, with formula Au(OH)3. It is also called auric acid with formula H3AuO3. It is easily dehydrated above 140 °C to gold(III) oxide. Salts of auric acid are termed aurates.

Gold hydroxide is used in medicine, porcelain making, gold plating, and daguerrotypes. Gold hydroxide deposited on suitable carriers can be used for preparation of gold catalysts.

Gold hydroxide is a product of electrochemical corrosion of gold metalization subjected to moisture and positive electric potential; it is one of the corrosion failure modes of microelectronics. Voluminous gold hydroxide is produced from gold metalization; after the layer grows thick it may spall, and the conductive particles may cause short circuits or leakage paths. The decreased thickness of the gold layer may also lead to an increase in its electrical resistance, which can also lead to electrical failure.