In optimization, a descent direction is a vector
that points towards a local minimum
of an objective function
.
Computing
by an iterative method, such as line search defines a descent direction
at the
th iterate to be any
such that
, where
denotes the inner product. The motivation for such an approach is that small steps along
guarantee that
is reduced, by Taylor's theorem.
Using this definition, the negative of a non-zero gradient is always a
descent direction, as
.
Numerous methods exist to compute descent directions, all with differing merits, such as gradient descent or the conjugate gradient method.
More generally, if
is a positive definite matrix, then
is a descent direction at
. This generality is used in preconditioned gradient descent methods.