Amine oxidase (copper-containing) (AOC) (EC 1.4.3.21 and EC 1.4.3.22; formerly EC 1.4.3.6) is a family of amine oxidase enzymes which includes both primary-amine oxidase and diamine oxidase; these enzymes catalyze the oxidation of a wide range of biogenic amines including many neurotransmitters, histamine and xenobiotic amines. They act as a disulphide-linked homodimer. They catalyse the oxidation of primary amines to aldehydes, with the subsequent release of ammonia and hydrogen peroxide, which requires one copper ion per subunit and topaquinone as cofactor:
- RCH2NH2 + H2O + O2
RCHO + NH3 + H2O2
The 3 substrates of this enzyme are primary amines (RCH2NH2), H2O, and O2, whereas its 3 products are RCHO, NH3, and H2O2.
Copper-containing amine oxidases are found in bacteria, fungi, plants and animals. In prokaryotes, the enzyme enables various amine substrates to be used as sources of carbon and nitrogen.
This enzyme belongs to oxidoreductases, specifically those acting on the CH-NH2 group of donors with oxygen as acceptor. The systematic name of this enzyme class is amine:oxygen oxidoreductase (deaminating) (copper-containing). This enzyme participates in 8 metabolic pathways: urea cycle and metabolism of amino groups, glycine, serine and threonine metabolism, histidine metabolism, tyrosine metabolism, phenylalanine metabolism, tryptophan metabolism, beta-alanine metabolism, and alkaloid biosynthesis ii. It has 2 cofactors: copper, and PQQ.