Švarc–Milnor lemma

In the mathematical subject of geometric group theory, the Švarc–Milnor lemma (sometimes also called Milnor–Švarc lemma, with both variants also sometimes spelling Švarc as Schwarz) is a statement which says that a group , equipped with a "nice" discrete isometric action on a metric space , is quasi-isometric to .

This result goes back, in different form, before the notion of quasi-isometry was formally introduced, to the work of Albert S. Schwarz (1955) and John Milnor (1968). Pierre de la Harpe called the Švarc–Milnor lemma "the fundamental observation in geometric group theory" because of its importance for the subject. Occasionally the name "fundamental observation in geometric group theory" is now used for this statement, instead of calling it the Švarc–Milnor lemma; see, for example, Theorem 8.2 in the book of Farb and Margalit.